3.1.78 \(\int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^4} \, dx\) [78]

3.1.78.1 Optimal result
3.1.78.2 Mathematica [A] (verified)
3.1.78.3 Rubi [A] (verified)
3.1.78.4 Maple [A] (verified)
3.1.78.5 Fricas [A] (verification not implemented)
3.1.78.6 Sympy [F]
3.1.78.7 Maxima [A] (verification not implemented)
3.1.78.8 Giac [A] (verification not implemented)
3.1.78.9 Mupad [B] (verification not implemented)

3.1.78.1 Optimal result

Integrand size = 19, antiderivative size = 126 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^4} \, dx=-\frac {4 x}{a^4}+\frac {664 \sin (c+d x)}{105 a^4 d}-\frac {88 \sin (c+d x)}{105 a^4 d (1+\sec (c+d x))^2}-\frac {4 \sin (c+d x)}{a^4 d (1+\sec (c+d x))}-\frac {\sin (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac {12 \sin (c+d x)}{35 a d (a+a \sec (c+d x))^3} \]

output
-4*x/a^4+664/105*sin(d*x+c)/a^4/d-88/105*sin(d*x+c)/a^4/d/(1+sec(d*x+c))^2 
-4*sin(d*x+c)/a^4/d/(1+sec(d*x+c))-1/7*sin(d*x+c)/d/(a+a*sec(d*x+c))^4-12/ 
35*sin(d*x+c)/a/d/(a+a*sec(d*x+c))^3
 
3.1.78.2 Mathematica [A] (verified)

Time = 2.77 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.93 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {\sin (c+d x) \left (6720 \arcsin (\cos (c+d x)) \cos ^8\left (\frac {1}{2} (c+d x)\right )+\left (664+2236 \cos (c+d x)+2636 \cos ^2(c+d x)+1184 \cos ^3(c+d x)+105 \cos ^4(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )}{105 a^4 d \sqrt {1-\cos (c+d x)} (1+\cos (c+d x))^{9/2}} \]

input
Integrate[Cos[c + d*x]/(a + a*Sec[c + d*x])^4,x]
 
output
(Sin[c + d*x]*(6720*ArcSin[Cos[c + d*x]]*Cos[(c + d*x)/2]^8 + (664 + 2236* 
Cos[c + d*x] + 2636*Cos[c + d*x]^2 + 1184*Cos[c + d*x]^3 + 105*Cos[c + d*x 
]^4)*Sqrt[Sin[c + d*x]^2]))/(105*a^4*d*Sqrt[1 - Cos[c + d*x]]*(1 + Cos[c + 
 d*x])^(9/2))
 
3.1.78.3 Rubi [A] (verified)

Time = 1.00 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.19, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.737, Rules used = {3042, 4304, 27, 3042, 4508, 3042, 4508, 3042, 4508, 3042, 4274, 24, 3042, 3117}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x)}{(a \sec (c+d x)+a)^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right ) \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}dx\)

\(\Big \downarrow \) 4304

\(\displaystyle -\frac {\int -\frac {4 \cos (c+d x) (2 a-a \sec (c+d x))}{(\sec (c+d x) a+a)^3}dx}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {4 \int \frac {\cos (c+d x) (2 a-a \sec (c+d x))}{(\sec (c+d x) a+a)^3}dx}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 \int \frac {2 a-a \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3}dx}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {4 \left (\frac {\int \frac {\cos (c+d x) \left (13 a^2-9 a^2 \sec (c+d x)\right )}{(\sec (c+d x) a+a)^2}dx}{5 a^2}-\frac {3 a \sin (c+d x)}{5 d (a \sec (c+d x)+a)^3}\right )}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 \left (\frac {\int \frac {13 a^2-9 a^2 \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{5 a^2}-\frac {3 a \sin (c+d x)}{5 d (a \sec (c+d x)+a)^3}\right )}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {4 \left (\frac {\frac {\int \frac {\cos (c+d x) \left (61 a^3-44 a^3 \sec (c+d x)\right )}{\sec (c+d x) a+a}dx}{3 a^2}-\frac {22 \sin (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {3 a \sin (c+d x)}{5 d (a \sec (c+d x)+a)^3}\right )}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 \left (\frac {\frac {\int \frac {61 a^3-44 a^3 \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {22 \sin (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {3 a \sin (c+d x)}{5 d (a \sec (c+d x)+a)^3}\right )}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {4 \left (\frac {\frac {\frac {\int \cos (c+d x) \left (166 a^4-105 a^4 \sec (c+d x)\right )dx}{a^2}-\frac {105 a^3 \sin (c+d x)}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {22 \sin (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {3 a \sin (c+d x)}{5 d (a \sec (c+d x)+a)^3}\right )}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 \left (\frac {\frac {\frac {\int \frac {166 a^4-105 a^4 \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}-\frac {105 a^3 \sin (c+d x)}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {22 \sin (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {3 a \sin (c+d x)}{5 d (a \sec (c+d x)+a)^3}\right )}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {4 \left (\frac {\frac {\frac {166 a^4 \int \cos (c+d x)dx-105 a^4 \int 1dx}{a^2}-\frac {105 a^3 \sin (c+d x)}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {22 \sin (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {3 a \sin (c+d x)}{5 d (a \sec (c+d x)+a)^3}\right )}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {4 \left (\frac {\frac {\frac {166 a^4 \int \cos (c+d x)dx-105 a^4 x}{a^2}-\frac {105 a^3 \sin (c+d x)}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {22 \sin (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {3 a \sin (c+d x)}{5 d (a \sec (c+d x)+a)^3}\right )}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 \left (\frac {\frac {\frac {166 a^4 \int \sin \left (c+d x+\frac {\pi }{2}\right )dx-105 a^4 x}{a^2}-\frac {105 a^3 \sin (c+d x)}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {22 \sin (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {3 a \sin (c+d x)}{5 d (a \sec (c+d x)+a)^3}\right )}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3117

\(\displaystyle \frac {4 \left (\frac {\frac {\frac {\frac {166 a^4 \sin (c+d x)}{d}-105 a^4 x}{a^2}-\frac {105 a^3 \sin (c+d x)}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {22 \sin (c+d x)}{3 d (\sec (c+d x)+1)^2}}{5 a^2}-\frac {3 a \sin (c+d x)}{5 d (a \sec (c+d x)+a)^3}\right )}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

input
Int[Cos[c + d*x]/(a + a*Sec[c + d*x])^4,x]
 
output
-1/7*Sin[c + d*x]/(d*(a + a*Sec[c + d*x])^4) + (4*((-3*a*Sin[c + d*x])/(5* 
d*(a + a*Sec[c + d*x])^3) + ((-22*Sin[c + d*x])/(3*d*(1 + Sec[c + d*x])^2) 
 + ((-105*a^3*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])) + (-105*a^4*x + (166* 
a^4*Sin[c + d*x])/d)/a^2)/(3*a^2))/(5*a^2)))/(7*a^2)
 

3.1.78.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3117
Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; 
 FreeQ[{c, d}, x]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4304
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc 
[e + f*x])^n/(f*(2*m + 1))), x] + Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e 
 + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e 
+ f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ 
[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
3.1.78.4 Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.61

method result size
parallelrisch \(\frac {781 \left (\cos \left (d x +c \right )+\frac {2741 \cos \left (2 d x +2 c \right )}{6248}+\frac {74 \cos \left (3 d x +3 c \right )}{781}+\frac {105 \cos \left (4 d x +4 c \right )}{24992}+\frac {16171}{24992}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \sec \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-840 d x}{210 a^{4} d}\) \(77\)
derivativedivides \(\frac {-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}+\frac {7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}-\frac {23 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+49 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {16 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-64 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{4}}\) \(98\)
default \(\frac {-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}+\frac {7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}-\frac {23 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+49 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {16 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-64 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{4}}\) \(98\)
risch \(-\frac {4 x}{a^{4}}-\frac {i {\mathrm e}^{i \left (d x +c \right )}}{2 a^{4} d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )}}{2 a^{4} d}+\frac {4 i \left (525 \,{\mathrm e}^{6 i \left (d x +c \right )}+2625 \,{\mathrm e}^{5 i \left (d x +c \right )}+5950 \,{\mathrm e}^{4 i \left (d x +c \right )}+7420 \,{\mathrm e}^{3 i \left (d x +c \right )}+5397 \,{\mathrm e}^{2 i \left (d x +c \right )}+2149 \,{\mathrm e}^{i \left (d x +c \right )}+382\right )}{105 d \,a^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}\) \(134\)
norman \(\frac {-\frac {4 x}{a}+\frac {65 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}+\frac {31 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{6 a d}-\frac {47 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{60 a d}+\frac {11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{70 a d}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{56 a d}-\frac {4 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) a^{3}}\) \(137\)

input
int(cos(d*x+c)/(a+a*sec(d*x+c))^4,x,method=_RETURNVERBOSE)
 
output
1/210*(781*(cos(d*x+c)+2741/6248*cos(2*d*x+2*c)+74/781*cos(3*d*x+3*c)+105/ 
24992*cos(4*d*x+4*c)+16171/24992)*tan(1/2*d*x+1/2*c)*sec(1/2*d*x+1/2*c)^6- 
840*d*x)/a^4/d
 
3.1.78.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.29 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^4} \, dx=-\frac {420 \, d x \cos \left (d x + c\right )^{4} + 1680 \, d x \cos \left (d x + c\right )^{3} + 2520 \, d x \cos \left (d x + c\right )^{2} + 1680 \, d x \cos \left (d x + c\right ) + 420 \, d x - {\left (105 \, \cos \left (d x + c\right )^{4} + 1184 \, \cos \left (d x + c\right )^{3} + 2636 \, \cos \left (d x + c\right )^{2} + 2236 \, \cos \left (d x + c\right ) + 664\right )} \sin \left (d x + c\right )}{105 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \]

input
integrate(cos(d*x+c)/(a+a*sec(d*x+c))^4,x, algorithm="fricas")
 
output
-1/105*(420*d*x*cos(d*x + c)^4 + 1680*d*x*cos(d*x + c)^3 + 2520*d*x*cos(d* 
x + c)^2 + 1680*d*x*cos(d*x + c) + 420*d*x - (105*cos(d*x + c)^4 + 1184*co 
s(d*x + c)^3 + 2636*cos(d*x + c)^2 + 2236*cos(d*x + c) + 664)*sin(d*x + c) 
)/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 
+ 4*a^4*d*cos(d*x + c) + a^4*d)
 
3.1.78.6 Sympy [F]

\[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {\int \frac {\cos {\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx}{a^{4}} \]

input
integrate(cos(d*x+c)/(a+a*sec(d*x+c))**4,x)
 
output
Integral(cos(c + d*x)/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x 
)**2 + 4*sec(c + d*x) + 1), x)/a**4
 
3.1.78.7 Maxima [A] (verification not implemented)

Time = 0.43 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.25 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {\frac {1680 \, \sin \left (d x + c\right )}{{\left (a^{4} + \frac {a^{4} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}} + \frac {\frac {5145 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {805 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {147 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a^{4}} - \frac {6720 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{4}}}{840 \, d} \]

input
integrate(cos(d*x+c)/(a+a*sec(d*x+c))^4,x, algorithm="maxima")
 
output
1/840*(1680*sin(d*x + c)/((a^4 + a^4*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)* 
(cos(d*x + c) + 1)) + (5145*sin(d*x + c)/(cos(d*x + c) + 1) - 805*sin(d*x 
+ c)^3/(cos(d*x + c) + 1)^3 + 147*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 15 
*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 - 6720*arctan(sin(d*x + c)/(cos( 
d*x + c) + 1))/a^4)/d
 
3.1.78.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.89 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^4} \, dx=-\frac {\frac {3360 \, {\left (d x + c\right )}}{a^{4}} - \frac {1680 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )} a^{4}} + \frac {15 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 147 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 805 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 5145 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{28}}}{840 \, d} \]

input
integrate(cos(d*x+c)/(a+a*sec(d*x+c))^4,x, algorithm="giac")
 
output
-1/840*(3360*(d*x + c)/a^4 - 1680*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2 
*c)^2 + 1)*a^4) + (15*a^24*tan(1/2*d*x + 1/2*c)^7 - 147*a^24*tan(1/2*d*x + 
 1/2*c)^5 + 805*a^24*tan(1/2*d*x + 1/2*c)^3 - 5145*a^24*tan(1/2*d*x + 1/2* 
c))/a^28)/d
 
3.1.78.9 Mupad [B] (verification not implemented)

Time = 13.71 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.09 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^4} \, dx=-\frac {15\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-192\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+1144\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-6112\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-1680\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+3360\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\left (c+d\,x\right )}{840\,a^4\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7} \]

input
int(cos(c + d*x)/(a + a/cos(c + d*x))^4,x)
 
output
-(15*sin(c/2 + (d*x)/2) - 192*cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2) + 11 
44*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2) - 6112*cos(c/2 + (d*x)/2)^6*sin 
(c/2 + (d*x)/2) - 1680*cos(c/2 + (d*x)/2)^8*sin(c/2 + (d*x)/2) + 3360*cos( 
c/2 + (d*x)/2)^7*(c + d*x))/(840*a^4*d*cos(c/2 + (d*x)/2)^7)